
Formal Specification and Verification of Data Separation
in a Separation Kernel for an Embedded System

Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John McLean
Naval Research Laboratory, Washington, DC 20375

{heitmeyer, archer, leonard, mclean}@itd.nrl.navy.mil

Abstract
Although many algorithms, hardware designs, and security pro-

tocols have been formally verified, formal verification of the secu-
rity of software is still rare. This is due in large part to the large
size of software, which results in huge costs for verification. This
paper describes a novel and practical approach to formally estab-
lishing the security of code. The approach begins with a well-
defined set of security properties and, based on the properties,
constructs a compact security model containing only information
needed to reason about the properties. Our approach was formu-
lated to provide evidence for a Common Criteria evaluation of an
embedded software system which uses a separation kernel to en-
force data separation. The paper describes 1) our approach to
verifying the kernel code and 2) the artifacts used in the evalua-
tion: a Top Level Specification (TLS) of the kernel behavior, a for-
mal definition of data separation, a mechanized proof that the TLS
enforces data separation, code annotated with pre- and postcon-
ditions and partitioned into three categories, and a formal demon-
stration that each category of code enforces data separation. Also
presented is the formal argument that the code satisfies the TLS.

Categories and Subject Descriptors: D.2.4 [Software]: Soft-
ware Engineering

General Terms: security, verification, languages, theory

Keywords: formal model, formal specification, theorem proving,
separation kernel, code verification

1. Introduction
A critical objective of many military systems is to protect the

confidentiality and integrity of sensitive information. Preventing
unauthorized disclosure and modification of information is of enor-
mous importance in military systems, since violations can jeopar-
dize national security. Compelling evidence is required therefore
that military systems satisfy their security requirements.

A promising approach to demonstrating the security of code
is formal verification, which has been successfully applied to al-
gorithms, such as floating point division [26] and clock synchro-

This paper is authored by employees of the United States Government and
is in the public domain.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
ACM 1-59593-518-5/06/0010.

nization [31], and security protocols such as cryptographic proto-
cols [24, 20]. However, most past efforts to verify security-critical
software have been extremely expensive. One reason is that these
efforts often built security models containing too much detail (see,
for example, [11]) or tried to prove too many properties (see, for
example, [36]). The result was that model building and property
proving became prohibitively expensive.

A challenging problem therefore is how to make the verifica-
tion of security-critical code affordable. This paper describes an
approach to verifying the security of software that is both novel
and practical. This approach was formulated in preparation for a
Common Criteria evaluation of the security of a software-based
embedded device called ED (Embedded Device). For the ED ap-
plication, satisfying the Common Criteria required a formal proof
of correspondence between a formal specification of ED’s security
functions and its required security properties and a demonstration
that the code implementing ED satisfied the formal specification.
ED, which processes data stored in different partitions of mem-
ory, is required to enforce a critical security property called data
separation; for example, ED must ensure that data in one memory
partition neither influences nor is influenced by data in another
partition. To ensure that data separation is not violated, or if it is
violated an exception occurs, the ED architecture includes a sep-
aration kernel [33], a tamper-proof, non-bypassable program that
mediates every access to memory.

The task of our group was to provide evidence to the certifying
authority that the ED separation kernel enforces data separation.
The kernel code, which consists of over 3000 lines of C and as-
sembly code, was annotated with pre-and postconditions in the
style of Hoare and Floyd. To provide evidence that ED enforces
data separation, we produced a Top Level Specification (TLS) of
the separation-relevant behavior of the kernel, a formal statement
of data separation, and a mechanized formal proof that the TLS
satisfies data separation. Then, the annotated code was partitioned
into three categories, each requiring a different proof strategy. Fi-
nally, the formal correspondence between the annotated code and
the TLS was established for each category of code. Recently, five
artifacts—the TLS, the formal statement of data separation, proofs
that the TLS satisfies data separation, the organization of the an-
notated code into the three categories, and the documents show-
ing correspondence of each category of code with the TLS—were
presented along with the annotated code as evidence in a Common
Criteria evaluation of ED.

This paper summarizes the process we followed in producing
evidence for the Common Criteria evaluation of ED’s separation
kernel, describes each artifact developed during this process, and
summarizes both the formal state machine model that underlies the

green
Text Box
NRL Release Number 06-1226-2883

TLS and the formal argument justifying our approach to establish-
ing code conformance with the TLS. The paper makes two tech-
nical contributions. First, it describes a novel technique for par-
titioning the code into three different categories—namely, Event,
Trusted, and Other Code—and for reasoning about the security of
each category. Second, it describes a method for demonstrating the
security of the code that is both original and practical. While the
method combines a number of well-known techniques for specify-
ing and reasoning about security—e.g., a state machine model rep-
resented both formally and in natural language, mechanized rea-
soning using PVS [34], and a demonstration of correspondence be-
tween the TLS and the annotated source code—which techniques
to apply, how to apply them, and how to combine them was far
from obvious and required significant discussion during the course
of the project. Along the way, many alternative approaches and
techniques were considered, and several were discarded. In our
view, both the technique for partitioning the code and the method
we formulated for proving that the code is secure should prove
useful in future efforts to verify the security of software.

The paper is organized as follows. Section 2 reviews the notion
of a separation kernel, summarizes the requirements of a Common
Criteria evaluation, and presents some details of ED. Section 3 de-
scribes the process we followed to demonstrate data separation and
describes the five artifacts that the process produced, including the
three categories of code and how we proved that each category of
code is secure. Section 4 presents the formal argument for demon-
strating code conformance. Sections 5 and 6 discuss some lessons
learned and describe topics requiring more research, i.e., the need
for more powerful tool support. Section 7 describes related work.
Finally, Section 8 presents some conclusions.

2. Background
2.1 Separation Kernel

A separation kernel [33] mimics the separation of a system
into a set of independent virtual machines by dividing the mem-
ory into partitions and restricting the flow of information between
those partitions. Separation kernels are being developed for mili-
tary applications requiring Multiple Independent Levels of Secu-
rity (MILS) by commercial companies such as Wind River Sys-
tems, Green Hills Software, and LynuxWorks [4]. In a MILS en-
vironment, a separation kernel acts as a reference monitor [6], i.e.,
is non-bypassable, evaluatable, always invoked, and tamper proof.

2.2 Common Criteria
Seven international organizations established the Common Cri-

teria to provide a single basis for evaluating the security of infor-
mation technology products [3]. Associated with the Common
Criteria are seven Evaluation Assurance Levels. EAL7, the high-
est assurance level, requires a formal specification of a product’s
security functions and its security model, and formal proof of cor-
respondence between the two.

2.3 Embedded Device (ED)
The device of interest in this paper, ED, processes data in an

embedded system. While at any given time the data stored and
processed by ED in one memory partition is classified at a single
security level, ED may later reconfigure that partition to store and
process data at a different security level. Because it stores and
processes data classified at different security levels, security viola-
tions by ED could cause significant damage. To prevent violations

of data separation, e.g., the “leaking” of data from one memory
partition to another, the ED design uses a separation kernel to me-
diate access to memory. By mediating every access, the kernel en-
sures that every memory access is authorized and that every trans-
fer of data from one ED memory location to another is authorized.
Any attempted memory access by ED that is unauthorized will
cause an exception. Section 3.3 describes how TAME [8, 7], an
interface to SRI’s theorem prover PVS [34], was used to support
the Common Criteria evaluation of ED’s separation kernel.

3. Code Verification Process
The process followed in constructing the five ED artifacts con-

sists of five steps. The process described below is an idealiza-
tion of the actual process since, in any real-world process, one
frequently returns to a former step to make corrections and add
missing information. However, the sequence of steps that follows
is a logical order for producing the various artifacts.

1. Formulate a Top Level Specification (TLS) of the kernel as a
state machine model, using the style introduced in [21, 23].

2. Formally express the data separation property in terms of
the inputs, state variables, and transitions defined in the state
machine model that underlies the TLS.

3. Translate the TLS and the data separation property into the
language of a mechanical prover, and prove formally that
the TLS satisfies the data separation property.

4. Given a source code implementation of the kernel annotated
with pre- and postconditions, partition the code into Event,
Other, and Trusted Code, where, informally, Event Code is
code corresponding to an event in the TLS that touches a
Memory Area of Interest (defined below), Trusted Code is
code that touches a Memory Area of Interest but is not Event
Code, and Other Code is neither Event Code nor Trusted
Code. Section 3.4 provides precise definitions of the three
different code categories.

5. Demonstrate that the Event Code does not violate separation
by constructing 1) a mapping from the Event Code to the
TLS events and from the code states to the states in the TLS,
and 2) a mapping from pre- and postconditions of the TLS
events to pre- and postconditions that annotate the corre-
sponding Event Code. Demonstrate separately that Trusted
Code and Other Code do not violate data separation.

3.1 Top Level Specification
Major goals of the Top Level Specification (TLS) are to pro-

vide a precise, yet understandable description of the required ex-
ternal behavior of ED’s separation kernel and to make explicit the
assumptions on which the specification is based. To achieve this,
the TLS represents the kernel as a state machine model using pre-
cise natural language. Such a natural language description was
introduced in 1984 to describe the behavior of a secure military
message system (MMS) [21, 23]. The advantage of natural lan-
guage is that it enables stakeholders from differing backgrounds
and with different objectives—the project manager, software de-
velopers, evaluators, and formal methods team—to communicate
precisely about the required kernel behavior and helps ensure that
misunderstandings are weeded out and issues resolved early in the
verification process. Another goal of the TLS is to provide a for-
mal context and precise vocabulary for defining data separation.

Like the secure MMS model, the state machine representing the
behavior of the ED kernel is defined in terms of an input alphabet,
a set of states, an initial state, and a transform relation describing
the allowed state transitions. The input alphabet contains internal
and external events, where an internal event can cause the kernel
to invoke some process and an external event is performed by an
external host. An example of an internal event is an event instruct-
ing ED to copy data from an input buffer associated with memory
partition i to a data area in partition i. An example of an external
event is the event occurring when an external host writes data into
an input buffer assigned to partition i. The transform (also called
the next-state relation) is defined on triples consisting of an event
in the input alphabet, the current state, and the new state. Provided
below are excerpts from the TLS as well as an example internal
event. This event, Copy Buf1In Data1In i, copies data from an
input buffer for partition i into a data area in partition i.

Partitions, State Variables, Events and States. We assume the
existence of n ≥ 1 dedicated memory partitions and a single
shared memory area. We also assume the existence of the fol-
lowing sets:

• V is a union of types, where each type is a non-empty set of
values.

• R is a set of state variable names. For all r in R, TY(r) ⊆
V is the set of possible values of state variable r. M is
a union of N non-overlapping memory areas, each repre-
sented by a state variable.

• H = P ∪E is a set of M events, where each event is either
an internal event in P or an external event in E.

A system state is a function mapping each state variable name r in
R to a value. Formally, for all r ∈ R: s(r) ∈ TY(r).

Memory Areas. The N memory areas contain N − 1 Memory
Areas of Interest, where N − 1 = mn, and m is the number of
Memory Areas of Interest per partition. Informally, a Memory
Area of Interest (MAI) is a memory area containing data whose
leakage would violate data separation. The m MAIs for a parti-
tion i, 1 ≤ i ≤ n, include partition i’s input and output buffers
and k data areas where data in partition i is stored and processed.
The N th memory area, called G, contains all programs and data
not residing in an MAI and is the single shared memory area. The
setM of all memory areas is defined as the union A∪{G}, where
A = {Ai,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m} contains the mn MAIs.
For all i, 1 ≤ i ≤ n, Ai = {Ai,j | 1 ≤ j ≤ m} is the set of
memory areas for partition i. To guarantee that the memory areas
of M are non-overlapping, the memory areas are required to be
pairwise disjoint.

State Variables. The set of state variables1 contained in R are

• a partition id c,

• the N memory areas in M, and

• a set of n sanitization vectorsWD[1], . . .,WD[n], each vec-
tor containing k elements.

1By convention, state variable names may refer to the values of
the variables.

The partition id c is 0 if no data processing in any partition is in
progress, and i, 1 ≤ i ≤ n, if data processing is in progress in
partition i. (Data processing can occur in only one partition at a
time.) For 1 ≤ j ≤ k, the boolean value of the jth elementWj

D[i]
of the sanitization vector for partition i is true if the jth memory
area of the ith partition has been sanitized and false otherwise. A
sanitized memory area is modeled as having the value 0.

Events. The set of internal events P ⊂ H is the union of n sets,
P1, . . . , Pn, of partition events, one set for each partition i, and a
singleton set Q; thus P is defined by P = [∪n

i=1Pi]∪ Q. Process-
ing occurs on partition i when a sequence of events from Pi is pro-
cessed. The sole member of Q is the event Other NonParProc,
an abstract internal event representing all internal events which
invoke data processing in the shared message area G. One exam-
ple of such an event is Assign Val, which causes some value to
be stored in G. The set of external events E ⊂ H is defined by
E = EIn∪EOut∪{Ext Ev Other}, where EIn = ∪n

i=1E
In
i and

EOut = ∪n
i=1E

Out
i . EIn

i is the set of external events writing into
or clearing the input buffers assigned to partition i, and EOut

i is the
set of external events reading from or clearing the output buffers
assigned to partition i. The event Ext Ev Other represents all
other external events.

Partition Functions. Operations on data in partition i, for ex-
ample, an operation copying data from one MAI in partition i
to another MAI in i, are called ‘partition functions.’ For all i,
1 ≤ i ≤ n, and for each internal event e in Pi, there exists a par-
tition function Γe associated with e. Each function Γe computes
a value stored in an MAI in A. For all e ∈ Pi, Γe has the signa-
ture Γe : TY(a1) → TY(a2), where a1 and a2 are MAIs in Ai.
Thus, each function Γe, where e is an internal event in Pi, takes a
single argument, the value stored in some MAI a1, and uses that
argument to compute a value to be stored in MAI a2.

Access Control Matrix. Associated with the M events and the
N memory areas is an M by N access control matrix AM, which
indicates the read and write access that each internal event e in P
(and its associated process) and each external event e in H has for
each memory area a inM. Each entry in the matrix is either null
meaning no access, R for read access, W for write access, or RW for
both read and write access. The left-most column of AM lists the
events in H , and the headings of the remaining columns list the N
memory areas in M as well as G.

For all i, j, 1 ≤ i, j ≤ n, i 6= j, an event associated with par-
tition i has null access to an MAI associated with partition j or
to G; similarly, an event associated with j has null access to an
MAI associated with i or to G. Moreover, the single event that in-
vokes non-partition processing, namely, Other NonParProc, has
R and W access for G and access null for all other memory areas,
i.e., the MAIs. Finally, the external events associated with parti-
tion i can only write into or read from input and output buffers
associated with i.

System. A system is a state machine whose transitions from one
state to the next are triggered by events. Formally, a system Σ is a
4-tuple Σ = (H, S, s0, T), where

• H is the set of events,

• S is the set of states,

• s0 is the initial state, and

• T is the system transform, a partial function from H × S
into S. T is partial because not all events are ‘enabled’ to
be executed in the current state.

Initial State. In the initial state s0, the partition id c is 0; for all i,
1 ≤ i ≤ n, the MAIs in Ai are 0; and each element of the sanitiza-
tion vectors,WD[1] . . .WD[n], is true. Hence, in the initial state,
no processing in any partition is authorized, only a non-partition
process is authorized to execute, each element of every sanitization
vector has the value true, and all MAIs have the value zero.

System Transform. The transform T is defined in terms of a set
R of transform rules,R = { Re | e ∈ H }, where each transform
rule Re describes how an event e transforms a current state into a
new state. The number of rules is M , one rule for each of the M
events in H . No rule requires access privileges other than those
defined by the access control matrix AM. The notation s and s′

represents the current state and the new state. Given state s and
state variable r, r’s value in s is denoted by rs. When an internal
or external event e does not affect the value of any state variable r,
when the precondition is not satisfied, or when the event e is not
enabled, the value of r does not change from state s to state s′, and
the state variable r retains its current value, i.e., rs = rs′ .

To denote that no state variable except those explicitly named
changes, we write NOCR̂ (NO Change except to variables in R̂),
where R̂ ⊂ R. This includes the case where the ith element of a
sanitization vector changes but no other vector elements change.
For example, the postcondition rs′ = x ∧ NOC{r}, where x ∈
TY(r), is equivalent to rs′ = x ∧ ∀ r̂ ∈ R, r̂ 6= r : r̂s′ = r̂s.

Suppose s is a state in S, e is an event in H , and R is the set
of state variables. Let pree be a state predicate associated with
e such that pree evaluates to true if e has the potential to occur
in state s and and false otherwise, and let poste be a predicate
associated with e such that poste(s, s

′) holds whenever e occurs
in state s and s′ is a possible poststate of s when event e occurs in
state s. Formally, the transform rule Re in R is defined by

Re : pree(s) ⇒ poste(s, s
′).

Whenever the result state of every event e is deterministic (which
is true in the TLS), the assertion poste(s, s

′) defines the poststate
s′ = T (e, s). To make T total on H × S, the complete definition
of T is written as

T (e, s) =

s′ if pree(s), where poste(s, s

′)
s otherwise.

In the above definition, pree(s) is not satisfied implies that e has
no effect—i.e., essentially, did not occur.

Example of a Transform Rule. Consider an internal event, e =
Copy Bfr1In Data1In i, which invokes a process copying data
from partition i’s Input Buffer 1, denoted B1

i , into partition i’s
Data Area 1, denoted D1

i . The transform rule for e is denoted
RCopy Bfr1In Data1In i. Preconditions for e are (1) the partition id c
equals i, and (2) the invoked process must have read access (‘R’)
for partition i’s Input Buffer 1 and write access (‘W’) for Data
Area 1 in i. Postconditions for e are that (3) the element for Data
Area 1 in i’s sanitization vector becomes false, (4) a function of
the value stored in i’s Input Buffer 1 is written into i’s Data Area 1,
and (5) no other state variable changes. For all i, the rule Re for
event e = Copy Bfr1In Data1In i is defined by

RCopy Bfr1In Data1In i :

cs = i ∧ (1)
AM[e, a1] = R and AM[e, a2] = W (2)

where a1 = B1
i and a2 = D1

i

⇒ W1
D,s′ [i] = false ∧ (3)

D1
i,s′ = Γe(B

1
i,s) ∧ (4)

NOC{W1
D

[i],D1
i }

(5)

3.2 Security Policy: Data Separation
To operate securely, ED must enforce data separation. Infor-

mally, this means that ED must prevent data in a partition i from
influencing or being influenced by 1) data in a partition j, where
i 6= j, 2) an earlier configuration of partition i, or 3) data stored
in G. Thus ED must prevent non-secure data flows. To demon-
strate that the TLS enforces data separation, we proved that it sat-
isfies five subproperties, namely, No-Exfiltration, No-Infiltration,
Temporal Separation, Separation of Control, and Kernel Integrity.
Below, each subproperty is defined formally using the notation in-
troduced in Section 3.1.

3.2.1 No-Exfiltration Property
The No-Exfiltration Property states that data processing in any

partition j cannot influence data stored outside the partition. This
property is defined in terms of the set Aj (the MAIs of partition j);
the entire memoryM; the internal events in Pj , which invoke data
processing in j; and external events in EIn

j ∪ EOut
j , which affect

data in j’s input and output buffers.

Property 3.1 (No-Exfiltration) Suppose that states s and s′ are in
state set S, event e is in H , memory area a is in M, and j is a
partition id, 1 ≤ j ≤ n. Suppose further that s′ = T (e, s). If e is
an event in Pj ∪ EIn

j ∪ EOut
j and as 6= as′ , then a is in Aj .

3.2.2 No-Infiltration Property
The No-Infiltration Property states that data processing in any

partition i is not influenced by data outside that partition. It is de-
fined in terms of the set Ai, which contains the MAIs of partition i.

Property 3.2 (No-Infiltration) Suppose that states s1, s2, s′1, and
s′2 are in S, event e is in H , and i is a partition id, 1 ≤ i ≤ n.
Suppose further that s′1 = T (e, s1) and s′2 = T (e, s2). If for all
a in Ai: as1 = as2 , then for all a in Ai: as′

1
= as′

2
.

3.2.3 Temporal Separation Property
The objective of this property is to guarantee that the k data

areas in any partition i are clear when the system is not processing
data in that partition, e.g., from the end of a processing thread in
one partition to the start of a new processing thread in the same
or a different partition.2 Satisfying this property implies a second
property—i.e., no data (e.g., Top Secret data) in a partition during
one configuration of the ith partition can leak into a later configu-
ration (e.g., at the Unclassified level) of the same partition i. The
set of states in which the system is not processing data stored in a
partition is exactly the set of states in which the partition id cs is 0.
This fact can be used in stating the Temporal Separation Property.
2The proof of this property depends on a constraint imposed by
the transform rules on the partition id c: If c changes, it changes
from 0 to non-zero or vice versa.

Property 3.3 (Temporal Separation) For all states s in S, for all i,
1 ≤ i ≤ n, if the partition id cs is 0, then the k data areas of
partition i are clear, i.e., D1

i,s = 0, . . ., Dk
i,s = 0.

3.2.4 Separation of Control Property
This property states that when data processing is in progress

on partition i, no data is being processed on partition j, j 6= i,
until processing on partition i terminates. The property is defined
in terms of the partition id c, which is i if processing is in progress
on partition i, where i > 0, and 0 otherwise, and the set Di of k
data areas in partition i, Di = {Dj

i | 1 ≤ j ≤ k}.

Property 3.4 (Separation of Control) Suppose that states s and
s′ are in S, event e is in H , data area a is in M, and j, where
1 ≤ j ≤ n, is a partition id. Suppose further that s′ = T (e, s). If
neither cs nor cs′ is j, then as = as′ for all a ∈ Dj .

3.2.5 Kernel Integrity Property
The Kernel Integrity Property states that when data processing

is in progress on partition i, the data stored on memory area G
does not change. This property is defined in terms of G and the set
Pi of events for partition i.

Property 3.5 (Kernel Integrity) Suppose that states s and s′ are
in state set S, event e is in H , and i is a partition id, 1 ≤ i ≤ n.
Suppose further that s′ = T (e, s). If e is a partition event in Pi,
then Gs′ = Gs.

3.3 Formal Verification
To formally verify that the TLS enforces data separation, the

natural language formulation of the TLS was translated into TAME
(Timed Automata Modeling Environment) [8, 7], a front-end to
the mechanical prover PVS [27] which helps a user specify and
reason formally about automata models. This translation requires
the completion of a template to define the initial states, state tran-
sitions, input events, and other attributes of the state machine Σ.
The TAME specification provides a machine version of the TLS
that can be shown mechanically to satisfy the five subproperties
defined above.

After constructing the TAME specification of the TLS, we for-
mulated two sets of TLS properties in TAME—invariant prop-
erties and other properties—that together formalize the five sub-
properties. Then, for each set of properties, we interactively con-
structed (TAME) proofs showing that the TAME specification sat-
isfies each property. The scripts of these proofs, which are saved
by PVS, can be rerun easily by the evaluators and serve as the for-
mal proofs of data separation. One benefit of TAME is that the
saved PVS proof scripts can be largely understood without rerun-
ning them in PVS.

3.4 Partitioning the Code
To show formally that the ED separation kernel enforces data

separation, we must prove that the kernel is a secure partial in-
stantiation of the state machine Σ defined by the TLS. The for-
mal verification described in Section 3.3 establishes formally that
a strict instantiation of the TLS enforces data separation. A par-
tial instantiation of the TLS is an implementation that contains
fine-grain details which do not correspond to the state machine Σ
defined in the TLS. A secure partial instantiation of the TLS is a
partial instantiation of the TLS in which the fine-grain details that
do not correspond to the TLS are benign. Section 4 contains the

formal foundation for the proof that the code is a secure partial
instantiation of the TLS.

The proof that the code for the ED kernel is a secure partial
instantiation of the TLS is based on a demonstration that all kernel
code falls into three major categories and one subcategory, with
proofs that the code in each category satisfies certain properties.
The categories are as follows:

1. Event Code is kernel code which implements a TLS inter-
nal event e in H and touches one or more MAIs. For each
segment of Event Code, it is checked that

(i) the concrete translation of the precondition in the TLS
for the corresponding event e is satisfied at the point in
the kernel code where the execution of the Event Code
is initiated, and

(ii) the concrete translation of the postcondition in the TLS
for the corresponding event e is satisfied at the conclu-
sion of Event Code execution.

2. Trusted Code is kernel code which touches MAIs but is not
Event Code. This code does not correspond to behavior de-
fined by the TLS and may have read and write access both
to MAIs and to memory areas outside of the MAIs. It is
validated either by a proof that the code does not permit any
non-secure information flows or, in rare instances, by as-
sumption. The TLS makes explicit any assumptions used in
connection with Trusted Code and its behavior. The proofs
for a given segment of Trusted Code characterize the en-
tire functional behavior of that Trusted Code using Floyd-
Hoare style assertions at the code level and show that no
non-secure information flows can occur in that code.

3. Other Code is kernel code that is neither Event nor Trusted
Code. More specifically, Other Code is kernel code which
does not correspond to any behavior defined by the TLS and
which has no access to any MAIs. Apple’s Xcode develop-
ment tool [2] was used to search the kernel code to locate all
code segments with access to MAIs, i.e, code segments clas-
sified as Event or Trusted Code. This involved identifying
all places in the kernel code where the MMU is reset and
observing the permissions assigned. By observing the ac-
cess granted for code segments categorized as Other Code,
we can ensure that they have no access to any MAI.

(a) A subset of Other Code, called Verified Code, is code
with no access to MAIs which is still security-relevant
because it performs functions necessary for the kernel
to enforce data separation. These functions include
setting up the MMU, establishing preconditions for
Event Code, etc. Floyd-Hoare style assertions at the
code level are used to prove that Verified Code cor-
rectly implements the required functions.

3.5 Demonstrating Code Conformance
Demonstrating code conformance requires the definition of two

mappings. To establish correspondence between concrete states
in the kernel code and abstract states in the TLS, a function α is
defined that relates concrete states to abstract states by relating
concrete entities (such as memory areas, code variables, and log-
ical variables) at the code level to abstract state variables (such
as MAIs and the partition id) in the TLS. For example, the actual
physical addresses of the MAIs are mapped to their corresponding

{CopyDIn partition id : partition = partition id}
{CopyDIn priv :

{(R, KER INBUFFER 1 partition), (W, KER PAR DATA STORAGE 1 partition)} ⊆ MMU}
{CopyDIn value data : ∀j.0 ≤ j < byte length.

A[j] = KER INBUFFER 1 partition START + j}
{CopyDIn def value rest : ∀j.byte length ≤ j < KER PAR DATA STORAGE 1 partition SIZE.

B[j] = KER PAR DATA STORAGE 1 partition START + j}
{CopyDIn local inbuffer : buffer in start = KER INBUFFER 1 partition START}
{CopyDIn local datain : part data start = KER PAR DATA STORAGE 1 partition START}

if (byte_length < (unsigned long)&__INBUFFER_SIZE)
{

/* copy data from inbuffer 1 to partition */
/* part_data_start contains the starting address of */
/* the memory area, buffer_in_start contains */
/* the starting address of the inbuffer */
/* kernel_memcopy is a copy routine whose functional correctness */
/* has been verified using Floyd-Hoare assertions */
kernel_memcopy(part_data_start, buffer_in_start, byte_length);

}

{CopyDIn copy size datain : byte length > KER PAR DATA STORAGE partition SIZE→ false}
{CopyDIn copy size inbuffer : byte length > KER INBUFFER 1 partition SIZE→ false}
{CopyDIn gamma copy : ∀j.0 ≤ j < byte length.

KER PAR DATA STORAGE 1 partition START + j = A[j]}
{CopyDIn gamma rest : ∀j.byte length ≤ j < KER PAR DATA STORAGE 1 partition SIZE.

KER PAR DATA STORAGE 1 partition START + j = B[j]}
{CopyDIn sanitize : part data sanitized partition = false}
{CopyDIn NOC : No concrete state variables have changed value except possibly

KER PAR DATA STORAGE partition and part data sanitized partition. }

Figure 1. Event Code and Code Level Assertions for Event Copy Bfr1In Data1In i

abstract state variables in the TLS. The map α also maps Event
Code to events in the TLS. Another map Φ relates assertions at the
abstract TLS level to assertions at the code level derived from the
map α. See Section 4 for more details.

Using Φ to relate pre- and postconditions for an event in the
TLS to derived pre- and postconditions for the corresponding Event
Code, we next determine for each piece of Event Code sets of
code-level pre- and postconditions that match the derived pre- and
postconditions as closely as possible. Figure 1 shows the Event
Code corresponding to the Copy Bfr1In Data1In i event in the
TLS and the code level pre- and postconditions for this Event
Code. In Figure 1, the top box contains the preconditions, then
the indented Event Code is listed, and finally the bottom box con-
tains the postconditions; each pre- and postcondition has the form
{Assertion Name : Assertion}. Generally, the match between
assertions in the TLS and derived code-level assertions is not exact
because auxiliary assertions are added 1) to express the correspon-
dence between variables in the code and physical memory areas3

(e.g., CopyDIn local datain), 2) to save values in memory ar-
eas as the values of logical variables (e.g., CopyDIn value data),
and 3) to express error conditions that the TLS implicitly assumes
to be impossible (e.g., CopyDIn copy size datain).

After defining the desired sets of code-level pre- and postcondi-
tions, we check whether these assertions are among the assertions
already proven in the annotated C code. The annotated C code
refers to memory areas by indexing into arrays that define mem-
ory maps in the code, whereas the mapping α refers to memory
areas by their actual physical addresses. Thus, to be equivalent
to the desired assertions, the assertions in the annotated code fre-
quently need dereferencing. For example, the annotated C code
assertion §8.4, TLS2, is defined by

3This facilitates Floyd-Hoare reasoning at the code level.

part data start =

(unsignedchar∗)ker rtime mmu map[partition].part data start,

which sets the variable part data start to the starting address
of the data area in the partition by indexing into the real-time mem-
ory map in the code and selecting the part data start member
of the structure corresponding to that array element. Dereferenc-
ing the index into the array and pointer into the structure yields the
memory area KER PAR DATA STORAGE 1 partition START, the
actual physical address of the partition data area, which stores the
value used in the code-level precondition CopyDIn local datain.

In our initial attempt to match a pre- and postcondition in the
annotated C code with each desired pre- and postcondition, four
different outcomes were possible:

• The desired assertion exactly matched an assertion in the
annotated code.

• The desired assertion exactly matched an assertion in the
annotated code but dereferencing was required.

• The desired assertion was a close match with an assertion in
the annotated code.

• No code assertion exactly or approximately matched the de-
sired assertion.

We worked with the group annotating the C code to ensure that as-
sertions corresponding to all desired pre- and postconditions were
added to and verified on the code. (In general, it is sufficient to
include strongest postconditions implying our derived assertions.)
To show correspondence between the pre- and postconditions in
the code and the TLS, two tables were created for each TLS event.

Table 1. Mapping Preconditions in the Code to Preconditions in the TLS
Precondition Φ(pree)(sc) Assertion in Precondition pree(s) Ref. Description

Desired in the Code Annotated Code in the TLS No.
CopyDIn partition id §8.4,P5 cs = i (1) Partition id is i
CopyDIn priv §8.4,TLS1∗ AM(e, B1

i) = R (2) R access for Input Buffer 1,
AM(e, D1

i) = W W access for Data Area 1
CopyDIn value data §8.4,P4∗ B1

i,s - Value of data in Input Buffer 1
CopyDIn def value rest §8.4,TLS4 D1

i,s - Value of Data Area 1
CopyDIn local inbuffer §8.4, TLS3∗ - - Local variable for Input Buffer 1
CopyDIn local datain §8.4,TLS2∗ - - Local variable for Data Area 1

Table 2. Mapping Postconditions in the Code to Postconditions in the TLS
Postcondition Φ(poste)(sc, s′c) Assertion in Postcondition poste(s, s

′) Ref. Description
Desired in the Code Annotated Code in the TLS No.

CopyDIn copy size datain §8.4,R2∗ - - Wrong size → Error return
CopyDIn copy size inbuffer §8.4, R3∗ - - Wrong size → Error return
CopyDIn gamma copy §8.4, R7∗ D1

i,s′ = Γ(B1
i,s) (4) Copy to Data Area 1

CopyDIn gamma rest §8.4,TLS6 - Rem Data Area 1 unchged
CopyDIn sanitize §8.4,TLS5∗ W1

D,s′ [i] = f alse (3) Data Area 1 not sanitized

CopyDIn NOC By inspection NOC{W1
D

[i],D1
i }

(5) No other change

Tables 1 and 2 are the correspondence tables for the pre- and post-
conditions for the TLS event e = Copy Bfr1In Data1In i de-
fined in Section 3.1. In the tables, s and s′ = T (e, s) represent the
abstract pre- and poststate; sc, and s′c represent the concrete pre-
and poststate; and Φ, which is formally defined in Section 4, maps
abstract predicates to corresponding concrete predicates.

In the tables, the first column contains the label of a desired
code-level pre- or postcondition, the second column gives the lo-
cation (section number and assertion label) of the corresponding
assertion in the annotated C code, the third column contains the
corresponding pre- or postcondition (if any) in the TLS, the fourth
column gives the reference number of the corresponding assertion
in the transform rule, and the fifth column briefly describes the as-
sertion. In cases where no corresponding assertion exists in the
TLS, ‘-’ appears in both the third and fourth columns. An asterisk
in the second column indicates that, for equivalence between the
assertion in the annotated code and the desired code assertion to
hold, the assertion in the annotated code requires dereferencing.

4. Formal Foundations

This section formalizes our method for showing that the ker-
nel code conforms to the behavior captured in the TLS. To begin,
a function α is defined that maps each concrete state at the code
level to a corresponding abstract state in the TLS state machine Σ
by relating variables at the concrete code level to variables at the
abstract TLS level. Variables at the concrete level include vari-
ables in the code, predicates defined on the code, logical history
variables, and memory areas. Among the most important memory
areas treated as concrete state variables are the data areas and the
input and output buffers assigned to each partition, which are cen-
tral to reasoning about possible information flows. Because each
possible value of a concrete state variable can be represented by
some possible value of the corresponding abstract state variable,
the map α from concrete to abstract state variables induces a map
α : Sc → Sa from concrete to abstract states in the obvious way.4

4To distinguish abstract from concrete entities, this section tags
abstract entities with an a and concrete entities with a c; for exam-

Once α is defined at the level of states in terms of state variables,
the set Ec of Event Code code segments transferring data either
to or from an MAI in the current partition is identified, and α is
extended to map each code segment ec in Ec to a corresponding
internal event ea = α(ec) in the TLS.

The map α from concrete states to abstract states provides a
means to take any assertion Pa about abstract states and derive a
corresponding assertion Φ(Pa) about concrete states as follows:

Φ(Pa)(sc)
∆
= Pa(α(sc)),

where sc is any state in Sc. Analogously, α can be used to derive
an assertion Φ(Pa)(s1

c , s
2
c) about a pair of concrete states from an

assertion about a pair of abstract states as follows:

Φ(Pa)(s1
c , s

2
c)

∆
= Pa(α(s1

c), α(s2
c)).

The map Φ is used to relate preconditions and postconditions in
the code to preconditions and postconditions in the TLS (see Fig-
ure 2). Note that preconditions (at both levels) apply only to one
state. To capture the fact that an event changes only certain state
variables (indicated at the abstract level using NOC), the postcon-
ditions are represented at both levels as predicates on two states.

To establish equivalence between the behavior of the kernel
code and a subset of the behavior modeled in the TLS, it is suffi-
cient to prove, in the simplest case, that for every ec in Ec,

1. Whenever the concrete code segment ec is ready to execute
in state sc, some concrete precondition Preec holds, where
Preec implies Φ(Preea), the concrete precondition derived
from the abstract precondition for ea = α(ec);

2. Whenever the concrete precondition Preec holds for the cur-
rent program state sc, some concrete postcondition Postec

holds for the pair of program states (sc,ec(sc)) immediately
before and immediately after execution of ec, where Postec

implies Φ(Postea), the concrete postcondition derived from
the abstract postcondition for ea;

3. The diagram in Figure 2 commutes when conditions 1 and 2
are satisfied and Preec(sc) holds.

ple, Sa represents the abstract states s and Sc the concrete states s.

Preea
(sa) sa

ea ea(sa) Postea
(sa, ea(sa))

Φ(Preea
)(sc)

Preec
(sc) sc

ec ec(sc) Postec
(sc, ec(sc))

Φ(Postea
)(sc, ec(sc))

||| |||

α α

↑↑ ↑↑

α

Figure 2. Relation between concrete and abstract transitions.

Provided Postea(sa, s
′
a) ≡ (s′a = ea(sa)) (as holds for poste in

the TLS transform described in Section 3.1), to establish condi-
tion 3, it is sufficient to prove that Preec(sc) ⇒ Φ(Preea)(sc)
and that Postec(sc, ec(sc)) ⇒ Φ(Postea)(sc, ec(sc)). Estab-
lishing conditions 1– 3 guarantees that whenever the code segment
ec executes in the code, there is an enabled event ea in the TLS that
causes a transition from the abstract image sa under α of the con-
crete prestate sc at the code level into an abstract state ea(sa) that
is the abstract image under α of the concrete poststate ec(sc) at the
code level. More concisely, conditions 1, 2, and 3 imply that there
exists an abstract transition that models the concrete transition.

The relation of Event Code segments to abstract events can be
slightly more complex than shown in Figure 2. For example, in
some cases, ec may implement more than one event. However,
these more complex cases can be handled similarly. When a con-
crete event implements n abstract events, for example, one looks
for a partition Prec ≡ Pre1

c ⊕ ... ⊕ Pren
c of the concrete precon-

dition Prec such that when the ith part Prei
c holds, the code ec

implements the ith abstract event. Then, one establishes for each i
a commutative diagram analogous to the diagram in Figure 2.

The argument that the kernel ensures data separation is based
on relating executions of the kernel code to executions in the TLS.
It begins by observing that α maps ED’s initial state via α to an
allowed initial state in the TLS. To support the remainder of the
argument, the Event Code set Ec and the code-level map α are ex-
tended to cover the Other Code, and it is shown that the Trusted
Code can be safely ignored. Most Event Code segments consist
of a single program statement. In contrast, Other Code contains
many lengthy code segments which simply manipulate local vari-
ables inside a function or procedure and do not map to any abstract
event; such segments typically occur prior to an Event Code seg-
ment. We model these Other Code segments at the abstract level
by a no−op (“do nothing”) event implicitly included in the TLS.

Because every code segment in the Event or Other Code is
modeled either by an abstract TLS event with concrete and ab-
stract transitions related as in Figure 2 or by a no−op in the TLS,
it follows that every execution of this part of the code corresponds
to an execution in the TLS. Because parts of the Trusted Code have
been verified and the remaining parts have been certified to cause
no insecure information flows, modeling this code at the abstract
level is unnecessary. Combining this reasoning with the additional
assurance that α relates concrete data and buffer memory areas
to abstract ones and thus models all information flows involving
Memory Areas of Interest, it follows that all kernel behavior rel-
evant to data separation at the concrete level is modeled at the
abstract level. Thus, the Data Separation Property proved at the
abstract level also holds at the concrete level.

5. Lessons Learned
5.1 Software Design Decisions

Three software design decisions were critical in making code
verification feasible. One major decision was to use a separation
kernel, a single software module to mediate all memory accesses.
A design that distributed the checking of memory accesses would
have made the task of proving data separation much more diffi-
cult, if not impossible. A second critical decision was to keep the
software simple. For example, once initiated, data processing in
a partition was run to completion unless an exception occurred.
In addition, ED’s services were limited to the essential ones—the
temptation to add new services late in development was resisted.
A third critical decision was to enforce the “least privilege prin-
ciple.” For example, if a process only required read access to a
memory area, the kernel only granted read, and not write, access.

5.2 Top-Level Specification
One major challenge was to understand the required behavior

of the separation kernel. Both scenarios and the SCR tools [19,
18] were useful in validating and extending our understanding of
the kernel behavior. To begin, we formulated several scenarios,
i.e., sequences of input events and how the kernel responded to
those events. After specifying a state machine model of the ker-
nel in SCR, we ran the scenarios through the SCR simulator. As
expected, formulating the scenarios and running them through the
simulator exposed gaps in our understanding. Both the scenarios
and the questions raised were valuable in eliciting details of the
required kernel behavior from ED’s development team.

Keeping the size of the TLS small was critical for many rea-
sons. It simplified communicating with the other stakeholders,
changing the specification when the kernel behavior changed, trans-
lating the specification into TAME, and proving that the TLS en-
forced data separation.

The natural language representation of the TLS enabled stake-
holders from differing backgrounds and with different objectives—
the project manager, the software developers, and the evaluators—
to communicate easily with the formal methods team about the
kernel’s required behavior. Discussion among these various stake-
holders helped ensure that misunderstandings were avoided and
issues resolved early in the certification process. This natural lan-
guage representation of the TLS for ED contrasts with the repre-
sentations used in many other formal specifications of secure sys-
tems, which are often expressed in specialized languages such as
ACL2 (see, e.g, [17]). Moreover, any ambiguity inherent in the
natural language representation was removed by translating the
TLS into TAME, since the state machine semantics underlying
TAME is expressed as a PVS theory.

5.3 Mechanized Verification
TAME’s specification and proof support significantly simpli-

fied the verification effort. Translating the TLS into TAME re-
quired about three days. Because the number of memory areas is
unspecified in the TLS, the overall memory content in the TLS had
to be captured in TAME as a function from a set of memory areas
to storable values. The higher order nature of PVS, which made
this feasible, also contributed to the compactness of the TAME
specification, which is only 368 lines long. In translating the TLS
to TAME, the correspondence between entities in the natural lan-
guage formulation and TAME entities was documented. Adjust-
ing the TAME specification to reflect later changes in the TLS re-
quired less than three hours. Representing the five subproperties
in TAME required about two hours.

About two weeks were needed to formally verify that the TLS
enforces data separation. Adding and proving a new property
(Kernel Integrity) suggested by an evaluator required under one
hour. In proving the subproperties, a few days were needed to for-
mulate an efficient proof approach. This exploration led to a new
PVS strategy designed to simplify the proof guidance in the most
complex proof. This strategy was useful in proving all five sub-
properties and has also been useful in other TAME applications.
The proof of each subproperty completes in two minutes or less.
Once the correct proof approach was identified, the time required
to develop the proof scripts interactively in TAME was one day.

5.4 Showing Code Conformance
Two months were required to establish conformance between

the TLS and the annotated C code. In the first month, we exper-
imented with several different approaches for demonstrating con-
formance before the approach presented in this paper was selected.
Once an approach was selected, the formal correspondence argu-
ment required one week. Three weeks were needed to construct
the correspondence of Event Code to TLS events, i.e., developing
the code level assertions necessary for the TLS pre- and postcon-
ditions to hold and locating the corresponding assertions in the
annotated C code. One day was spent using the Xcode tool to lo-
cate all Event and Trusted Code and to verify that the permissions
for the Other Code did not include access to MAIs. One week was
needed to add the required assertions to the annotated code.

Our method for demonstrating code conformance relies on the
notions of MAIs and Event Code. The extent to which our method
can be extended to other applications depends on whether an anal-
ogous method of identifying Event Code (and Trusted Code) can
be found. This is likely to be possible in other applications that
must enforce data separation.

6. Open Problems

6.1 Checking and Constructing Code Annotations
For many years, researchers have recommended annotating code

with pre- and postconditions and invariants (see, e.g., [25]). Code
annotations are already used in practice. For example, software
developers at Praxis annotate Spark programs with assertions and
use tools to automatically check the validity of the assertions [10].
Moreover, at Microsoft, annotations are a mandated part of the
software development process in the largest product groups [12].
However, manual annotation of source code with pre- and postcon-
ditions remains rare in the wider software development commu-
nity because it is both tedious and error-prone. Hence, automated

tools for checking code annotations would be extremely valuable.
Even more valuable are tools that can construct pre- and postcon-
ditions automatically. One approach may be for a developer to
generate some key pre- and postconditions. Given a small set of
annotations, a tool could then generate additional annotations au-
tomatically.

6.2 A Code Conformance Proof Assistant
The semantic distance between the abstract TLS required for a

Common Criteria evaluation and a low-level C program is huge.
While the TLS describes the security-relevant program behavior
in terms of sets, functions, and relations, the description of the
behavior of a C program is in terms of low-level constructs, such
as arrays, integers, and bits stored in registers and memory areas.
Hence, automatic demonstration of conformance of low level C
code to a TLS is unrealistic. A more realistic goal is a proof assis-
tant with two inputs, a C program annotated with assertions and a
TLS of the security-relevant functions of that program, for helping
the user establish that the C program satisfies the TLS.

6.3 Automatic Code Generation
One promising way to obtain high assurance that an implemen-

tation satisfies critical security properties is to generate code auto-
matically from a specification that has been proven to satisfy the
properties. Automatic code generation is already feasible for some
low-level specification languages such as Esterel [1]. While con-
structing efficient source code from more abstract specifications
is possible for simple program constructs using simple data types
(see, e.g., [30]), new research is needed to produce efficient code
from specifications containing richer constructs and data types.
Such technology should drastically reduce the effort required to
produce efficient code and to increase assurance that the code sat-
isfies critical security properties.

7. Related Work
In the 1980s, the SCOMP [13], SeaView [22], LOCK [35],

and Multinet Gateway [14] projects all applied formal methods
to the specification and verification of systems. All developed
TLSs and formal statements of the system security policies. For
SCOMP, Multinet Gateway, and LOCK, the TLS was shown for-
mally to satisfy the security policy. For SeaView, only two of
31 operations in the TLS were verified against the security policy
model [36]. Conformance between the TLS and the SCOMP code
was shown by constructing several mappings: English language
to TLS, TLS to pseudo-code, and TLS to actual code [11]. The
mapping was top down from the TLS to code; as a result, some
code was unmapped. This approach is similar to our mapping of
Event Code to the TLS, although the mapping is in the other direc-
tion. The LOCK project constructed mappings partially relating
the TLS to the source code; specification-based testing provided
additional evidence of correspondence. In Multinet Gateway, ver-
ification conditions were generated to show conformance between
the specification and the code. If and how these conditions were
discharged is unclear. Each project used tools to aid in specifi-
cation and verification: SCOMP used HDM [29], Seaview used
EHDM [32], and Multinet Gateway and LOCK used Gypsy [15].
More recently, in 2006, we formulated a second possible approach
to software verification, based on TAME, which uses verified for-
mal pseudocode as “glue” relating a TLS to actual code [9].

In [17, 5], Greve, Wilding, and Vanfleet (GWV) present an
ACL2 model for a generic separation kernel. In the model, a func-
tion describes the possible information flows between memory ar-
eas. This notion of flow is not as fine-grained as in our model,
where access (with its possible information flows) is granted to
each process only when it executes in a partition, thus provid-
ing least privilege in addition to separation. In the GWV ap-
proach, separation includes No-Exfiltration and No-Infiltration but
not Temporal Separation, since the model does not allow recon-
figurable partitions. How the GWV model was used to verify the
AAMP7 microprocessor is described in [16, 28]. A traditional ver-
ification process was followed: build a formal security policy, an
abstract and detailed model, and an implementation; prove that the
abstract model satisfies the security policy; and show correspon-
dence between the abstract and detailed models and between the
detailed model and the implementation. Whether correctness was
proven at either the detailed design level or code level is unclear.

8. Conclusions
This paper has introduced a novel and affordable approach for

verifying security down to the source code level. The approach be-
gins with a well-defined security policy, builds the minimal state
machine model needed to prove that the model satisfies the policy,
and proves, using a mechanical verifier, that the security model
satisfies the policy. Once complete, the code is annotated with
preconditions and postconditions and then partitioned into Event,
Trusted, and Other Code. The final step is to 1) demonstrate con-
formance of the Event Code and the code pre- and postconditions
with the internal events and pre- and postconditions of the TLS
and 2) show that the Trusted Code and the Other Code are benign.

Tools such as model checkers and theorem provers are already
available for verifying that a formal specification satisfies a secu-
rity policy. A research challenge is to develop tools 1) for vali-
dating and constructing pre- and postconditions from source code,
including C code, 2) to help show conformance of annotated code
with a TLS, and 3) to automatically construct efficient, provably
correct code from specifications. Research that addresses these
three problems should significantly increase the affordability of
constructing verified security-critical software.

9. Acknowledgments
We acknowledge the monumental effort of the group who an-

notated the kernel code with pre- and postconditions and of the
ED project leader, who had the foresight to include a separation
kernel and to keep the design simple. Without the annotated code
and solid design decisions, our effort would have been impossible.
We also thank the members of the ED design team for answering
questions about ED’s operational behavior.

10. REFERENCES
[1] SCADE Tool Suite. Tools and documentation available at

http://www.esterel-technologies.com/products/scade-suite.
[2] Xcode 2.1. Tool and documentation available at

http://developer.apple.com/tools/xcode/index.html.
[3] Common criteria for information technology security evaluation, Parts 1–3.

Tech. Report CCIMB-2004-01-001—003, Version 2.2, Rev. 256, Jan. 2004.
[4] C. Adams. Keeping secrets in integrated avionics. Aviation Today, 2004.
[5] J. Alves-Foss and C. Taylor. An analysis of the GWV security policy. In 5th

Internat. Workshop on ACL2 Prover and Its Applications (ACL2-2004), 2004.
[6] J.P. Anderson. Computer security technology planning study. Technical

Report ESD-TR-73-51, ESD/AFSC, Hanscom AFB, Bedford, MA, 1972.
[7] M. Archer, C. Heitmeyer, and E. Riccobene. Proving invariants of I/O

automata with TAME. Automated Software Eng., 9:201–232, 2002.

[8] M. Archer. TAME: Using PVS strategies for special-purpose theorem
proving. Annals of Math. and Artificial Intelligence, 29(1-4):131–189, 2000.

[9] M. Archer and E. Leonard. Establishing high confidence in code
implementations of algorithms using formal verification of pseudocode. In
Proc., 3rd Internat. Verification Workshop (VERIFY ’06), Seattle, WA,
August 2006.

[10] J. Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

[11] T.V. Benzel. Analysis of a kernel verification. In Proceedings of the IEEE
Security and Privacy Conference, April 1984.

[12] M. Das. Formal specifications on industrial-strength code – From myth to
reality. In Proc., Computer-Aided Verification (CAV 2006), Seattle, WA,
August 2006.

[13] L.J. Fraim. Secure office management system: The first commodity
application on a trusted system. In Proc., 1987 Fall Joint Computer Conf. on
Exploring Technology: Today and Tomorrow, 1987.

[14] S. Gerhart, D. Craigen, and T. Ralston. Case study: Multinet Gateway
System. IEEE Software, pages 37–39, 1994.

[15] D.I. Good. Mechanical Proofs about Computer Programs, chapter 3, pages
55–75. Prentice Hall, 1985.

[16] D. Greve, R. Richards, and M. Wilding. A summary of intrinsic partitioning
verification. In Fifth Internat. Workshop on the ACL2 Prover and Its
Applications (ACL2-2004), 2004.

[17] D. Greve, M. Wilding, and W.M. Vanfleet. A separation kernel formal
security policy. In Fourth Internat. Workshop on the ACL2 Prover and Its
Applications (ACL2-2003), July 2003.

[18] C. Heitmeyer, J. Kirby, Jr., B. Labaw, and R. Bharadwaj. SCR*: A toolset for
specifying and analyzing software requirements. In Proc. Computer-Aided
Verification, 10th Annual Conf. (CAV’98), Vancouver, Canada, 1998.

[19] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency
checking of requirements specifications. ACM Trans. on Software Eng. and
Methodology, 5(3):231–261, 1996.

[20] J. Jürjens. Sound methods and effective tools for model-based security
engineering with UML. In Proc., 27th Internat. Conf. on Software
Engineering, St. Louis, MO, 2005.

[21] C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A security model for
military message systems. ACM Trans. on Computer Systems, 2(3):198–222,
August 1984.

[22] T.F. Lunt, D.E. Denning, R.R. Schell, M. Heckman, and W.R. Shockley. The
SeaView security model. IEEE Trans. on Software Eng., 16(6), 1990.

[23] J. McLean, C. Landwehr, and C. Heitmeyer. A formal statement of the
military message system security model. In Proc., 1984 IEEE Symposium on
Security and Privacy, pages 188–194, 1984.

[24] C. Meadows. Analysis of the internet key exchange protocol using the NRL
protocol analyzer. In IEEE Symp. on Security and Privacy, Oakland, 1999.

[25] B. Meyer. Applying “design by contract”. IEEE Computer, 25(10), 1992.
[26] J Strother Moore, Thomas W. Lynch, and Matt Kaufmann. A mechanically

checked proof of the AMD5K86TM floating-point division program. IEEE
Transactions on Computers, 7(9), 1998.

[27] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans.
on Software Eng., 21(2), 1995.

[28] R. Richards, D. Greve, M. Wilding, and W.M. Vanfleet. The common criteria,
formal methods and ACL2. In Fifth Internat. Workshop, ACL2 Prover and Its
Applications (ACL2-2004), 2004.

[29] L. Robinson. The HDM handbook, volume 1: The foundations of HDM, SRI
project 4828. Tech. report, SRI International, Menlo Park, CA, June 1979.

[30] T. Rothamel, C. Heitmeyer, E. Leonard, and A. Liu. Generating optimized
code from SCR specifications. In Proc., ACM SIGPLAN/SIGBED Conf. on
Languages, Compilers and Tools for Embedded Systems (LCTES 2006),
Ottawa, Canada, June 2006.

[31] J. Rushby. A formally verified algorithm for clock synchronization under a
hybrid fault model. In 13th ACM Symp. on Principles of Distributed
Computing, Los Angeles, CA, August 1994.

[32] J. Rushby, F. von Henke, and S. Owre. An introduction to formal
specification and verification using EHDM. Technical Report CSL-91-2, SRI
International, Menlo Park, CA, February 1991.

[33] J. Rushby. Design and verification of secure systems. In Proc., Eighth ACM
Symp. on Operating System Principles, pages 12–21, Dec. 1981.

[34] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Prover Guide, Version 2.4. Technical report, Computer Science Lab, SRI
Internat., Menlo Park, CA, November 2001.

[35] R. Smith. Cost profile of a highly assured, secure operating system. ACM
Transactions on Information and System Security, 4(1):72–101, 2001.

[36] R.A. Whitehurst and T.F. Lunt. The SeaView verification. In Proc., Computer
Security Foundations Workshop II, 1989, June 1989.

